Перевод: с русского на английский

с английского на русский

(элементов группы)

  • 1 связка элементов группы трудности А

    Универсальный русско-английский словарь > связка элементов группы трудности А

  • 2 серия элементов группы трудности С

    Универсальный русско-английский словарь > серия элементов группы трудности С

  • 3 требуемое количество элементов группы трудности А

    Универсальный русско-английский словарь > требуемое количество элементов группы трудности А

  • 4 минералы редкоземельных элементов

    1. rare-earth elements minerals

     

    минералы редкоземельных элементов
    Минералы, содержащие лантаноиды (редкие земли) — химич. элементы Периодич. системы с ат. н. от 57 до 71. Суммарное содержание лантаноидов в земной коре ок. 0,01 % (по массе), что соответст. содержанию меди. Известно более 250 минералов, содержащих РЗЭ. К собств. минералам можно отнести 60-65 из них, в к-рых содержание суммы оксидов РЗ выше 5— 8 %. По химич. природе минералы представляют гл. обр. фосфаты, фториды или фторо-карбонаты, силикаты и силикотитанаты, ни-оботанталаты, титанониобаты. Минералы обычно содержат нек-рое кол-во тория, иногда урана.
    Наиб. промышл. значение имеют сле. минералы: монацит (Се, La...)PO,,, содержит 50-60 % La2O3 и 4-12 % ТiO2; бастнезит (Се, La...)FCO3, содержит 73-77 % La203; паризит Са(Се, La...)2(CO3)3F2, содержит 53-64,5 % Р32О3, от следов до 8 % Y (иттропаризит); лопарит (NA, Ca, Ce...)2(Ti, Nb, Ta)2O6> содержит 39,2-40 % ТiO2, 32-34 % (Се, La...)2O3, 8-10 % (Nb, Та)2О5; эвксенит (Y, Ce, Ca...)(Ti, Nb, Та)2О6, содержит 18,2-27,7 % (Y, Еr...)2О3, 0,2-4,3 % (Се, La...)2O3, 16-30 % TiO2, 4,3-41,4 % Nb2O5, 1,3-23 % Та; ксенотим YPO4, содержит 52-62,6 % Y2O3 и примеси лантаноидов. Соотнош. м-ду отд. элементами в минералах сильно колеблется. В одних преобладают элементы цериевой группы и только до 5 % иттриевых земель (например, монацит,бастнезит, лопарит), в других — итгриевой группы (ксенотим, эвксенит). Пром-ть базируется главным образом на разработке монацитовых россыпей, а тж. месторождений, в к-рых содержится бастнезит (бастнезит-кальцитовые жилы). При переработке редкоземельного сырья любого типа первоначально выделяют смесь РЗЭ (в виде оксидов, гидрооксидов), к-рая затем поступает на разделение с целью получения индивидуальных элементов.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > минералы редкоземельных элементов

  • 5 сплавы элементов одной группы

    Универсальный русско-английский словарь > сплавы элементов одной группы

  • 6 объединять в группы

    Русско-английский большой базовый словарь > объединять в группы

  • 7 дрейф среднего значения группы

    Универсальный русско-английский словарь > дрейф среднего значения группы

  • 8 последовательно-параллельная схема электрического соединения элементов

    Oil: electrically-square arrangement (с импедансом группы таким же, как у отдельного элемента)

    Универсальный русско-английский словарь > последовательно-параллельная схема электрического соединения элементов

  • 9 последовательно-параллельная схема электрического соединения элементов с импедансом группы таким же, как у отдельного элемента

    Универсальный русско-английский словарь > последовательно-параллельная схема электрического соединения элементов с импедансом группы таким же, как у отдельного элемента

  • 10 сплав элементов 3 и 5 группы

    Microelectronics: 3-5 alloy

    Универсальный русско-английский словарь > сплав элементов 3 и 5 группы

  • 11 композиция

    2) Medicine: composition (препарата), compound
    3) Engineering: blend, formula, formulation, furnish (бумаги), furnishing (бумаги), mixture
    4) Construction: compo, composition (материал)
    6) Law: composition of matter (механическая смесь ингредиентов или химическое соединение как категория патентоспособных объектов)
    7) Architecture: arrangement
    9) Music: song, track
    10) Polygraphy: body (материала)
    11) Information technology: compositing, makeup
    12) Perfume: fragrance
    13) Advertising: device
    14) Polymers: blend compound, composite, composite material, preparation, system
    17) leg.N.P. composition (ancient laws of franks, Goths, Burgundians etc.)
    18) oil&gas: make-up

    Универсальный русско-английский словарь > композиция

  • 12 расположение в определённом порядке

    1. array

     

    расположение в определённом порядке
    Напр. элементов группы сейсмоприёмников или взрывных скважин (электродов в методах сопротивлений и вызванной поляризации)
    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > расположение в определённом порядке

  • 13 система

    1. system
    2. solar-plus-supplementary system
    3. en



     

    система
    Группа взаимодействующих объектов, выполняющих общую функциональную задачу. В ее основе лежит некоторый механизм связи.
    [ ГОСТ Р МЭК 61850-5-2011]

    система

    Набор элементов, которые взаимодействуют в соответствии с проектом, в котором элементом системы может быть другая система, называемая подсистемой; система может быть управляющей системой или управляемой системой и включать аппаратные средства, программное обеспечение и взаимодействие с человеком.
    Примечания
    1 Человек может быть частью системы. Например, человек может получать информацию от программируемого электронного устройства и выполнять действие, связанное с безопасностью, основываясь на этой информации, либо выполнять действие с помощью программируемого электронного устройства.
    2 Это определение отличается от приведенного в МЭС 351-01-01.
    [ ГОСТ Р МЭК 61508-4-2007]

    система
    Множество (совокупность) материальных объектов (элементов) любой, в том числе различной физической природы, а также информационных объектов, взаимосвязанных и взаимодействующих между собой для достижения общей цели.
    [ ГОСТ Р 43.0.2-2006]

    система
    Совокупность элементов, объединенная связями между ними и обладающая определенной целостностью.
    [ ГОСТ 34.003-90]

    система
    Совокупность взаимосвязанных и взаимодействующих элементов.
    [ ГОСТ Р ИСО 9000-2008]

    система

    -
    [IEV number 151-11-27]

    система
    Набор связанных элементов, работающих совместно для достижения общей Цели. Например: • Компьютерная система, состоящая из аппаратного обеспечения, программного обеспечения и приложений. • Система управления, состоящая из множества процессов, которые планируются и управляются совместно. Например, система менеджмента качества. • Система управления базами данных или операционная система, состоящая из множества программных модулей, разработанных для выполнения набора связанных функций.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    система
    Множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство. Следует отметить, что это определение (взятое нами из Большой Советской Энциклопедии) не является ни единственным, ни общепризнанным. Есть десятки определений понятия “С.”, которые с некоторой условностью можно поделить на три группы. Определения, принадлежащие к первой группе, рассматривают С. как комплекс процессов и явлений, а также связей между ними, существующий объективно, независимо от наблюдателя. Его задача состоит в том, чтобы выделить эту С. из окружающей среды, т.е. как минимум определить ее входы и выходы (тогда она рассматривается как “черный ящик”), а как максимум — подвергнуть анализу ее структуру (произвести структуризацию), выяснить механизм функционирования и, исходя из этого, воздействовать на нее в нужном направлении. Здесь С. — объект исследования и управления. Определения второй группы рассматривают С. как инструмент, способ исследования процессов и явлений. Наблюдатель, имея перед собой некоторую цель, конструирует (синтезирует) С. как некоторое абстрактное отображение реальных объектов. При этом С. (“абстрактная система”) понимается как совокупность взаимосвязанных переменных, представляющих те или иные свойства, характеристики объектов, которые рассматриваются в данной С. В этой трактовке понятие С. практически смыкается с понятием модели, и в некоторых работах эти два термина вообще употребляются как взаимозаменяемые. Говоря о синтезе С., в таких случаях имеют в виду формирование макромодели, анализ же С. совпадает в этой трактовке с микромоделированием отдельных элементов и процессов. Третья группа определений представляет собой некий компромисс между двумя первыми. С. здесь — искусственно создаваемый комплекс элементов (например, коллективов людей, технических средств, научных теорий и т.д.), предназначенный для решения сложной организационной, экономической, технической задачи. Следовательно, здесь наблюдатель не только выделяет из среды С. (и ее отдельные части), но и создает, синтезирует ее. С. является реальным объектом и одновременно — абстрактным отображением связей действительности. Именно в этом смысле понимает С. наука системотехника. Между этими группами определений нет непроходимых границ. Во всех случаях термин “С.” включает понятие о целом, состоящем из взаимосвязанных, взаимодействующих, взаимозависимых частей, причем свойства этих частей зависят от С. в целом, свойства С. — от свойств ее частей. Во всех случаях имеется в виду наличие среды, в которой С. существует и функционирует. Для исследуемой С. среда может рассматриваться как надсистема, соответственно, ее части — как подсистемы, а также элементы С., если их внутренняя структура не является предметом рассмотрения. С. делятся на материальные и нематериальные. К первым относятся, например, железная дорога, народное хозяйство, ко вторым — С. уравнений в математике, математика как наука, далее — С. наук. Автоматизированная система управления включает как материальные элементы (ЭВМ, документация, люди), так и нематериальные — математические модели, знания людей. Разделение это тоже неоднозначно: железную дорогу можно рассматривать не только как материальную С., но и как нематериальную С. взаимосвязей, соотношений, потоков информации и т.д. Закономерности функционирования систем изучаются общей теорией систем, оперирующей понятием абстрактной С. Наибольшее значение среди абстрактных С. имеют кибернетические С. Есть два понятия, близкие понятию С.: комплекс, совокупность (множество объектов). Они, однако, не тождественны ему, как нередко утверждают. Их можно рассматривать как усеченные, неполные понятия по отношению к С.: комплекс включает части, не обязательно обладающие системными свойствами (в том смысле, как это указано выше), но эти части сами могут быть системами, и элементы последних такими свойствами по отношению к ним способны обладать. Совокупность же есть множество элементов, не обязательно находящихся в системных отношениях и связях друг с другом. В данном словаре мы стремимся по возможности последовательно различать понятия С. и модели, рассматривая С. как некий объект (реальной действительности или воображаемый — безразлично), который подвергается наблюдению и изучению, а модель — как средство этого наблюдения и изучения. Разумеется, и модель, если она сама оказывается объектом наблюдения и изучения, в свою очередь рассматривается как С. (в частности, как моделируемая С.) — и так до бесконечности. Все это означает, что такие, например, понятия, как переменная или параметр, мы (в отличие от многих авторов) относим не к С., а к ее описанию, т.е. к модели (см. Параметры модели, Переменная модели), численные же их значения, характеризующие С., — к С. (например, координаты С.). • Системы математически описываются различными способами. Каждая переменная модели, выражающая определенную характеристику С., может быть задана множеством конкретных значений, которые эта переменная может принимать. Состояние С. описывается вектором (или кортежем, если учитываются также величины, не имеющие численных значений), каждая компонента которого соответствует конкретному значению определенной переменной. С. в целом может быть описана соответственно множеством ее состояний. Например, если x = (1, 2, … m) — вектор существенных переменных модели, каждая из которых может принять y значений (y = 1, 2, …, n), то матрица S = [ Sxy ] размерностью m ? n представляет собой описание данной С. Широко применяется описание динамической С. с помощью понятий, связанных с ее функционированием в среде. При этом С. определяется как три множества: входов X, выходов Y и отношений между ними R. Полученный “портрет системы” может записываться так: XRY или Y = ®X. Аналитическое описание С. представляет собой систему уравнений, характеризующих преобразования, выполняемые ее элементами и С. в целом в процессе ее функционирования: в непрерывном случае применяется аппарат дифференциальных уравнений, в дискретном — аппарат разностных уравнений. Графическое описание С. чаще всего состоит в построении графа, вершины которого соответствуют элементам С., а дуги — их связям. Существует ряд классификаций систем. Наиболее известны три: 1) Ст. Бир делит все С. (в природе и обществе), с одной стороны, на простые, сложные и очень сложные, с другой — на детерминированные и вероятностные; 2) Н.Винер исходит из особенностей поведения С. (бихевиористский подход) и строит дихотомическую схему: С., характеризующиеся пассивным и активным поведением; среди последних — нецеленаправленным (случайным) и целенаправленным; в свою очередь последние подразделяются на С. без обратной связи и с обратной связью и т.д.; 3) К.Боулдинг выделяет восемь уровней иерархии С., начиная с простых статических (например, карта земли) и простых кибернетических (механизм часов), продолжая разного уровня сложности кибернетическими С., вплоть до самых сложных — социальных организаций. Предложены также классификации по другим основаниям, в том числе более частные, например, ряд классификаций С. управления. См. также: Абстрактная система, Адаптирующиеся, адаптивные системы, Большая система, Вероятностная система, Выделение системы, Входы и выходы системы, Детерминированная система, Динамическая система, Дискретная система, Диффузная система, Замкнутая (закрытая) система, Иерархическая структура, Имитационная система, Информационная система, Информационно-развивающаяся система, Кибернетическая система, Координаты системы, Надсистема, Нелинейная система, Непрерывная система, Открытая система, Относительно обособленная система, Память системы, Подсистема, Портрет системы, Разомкнутая система, Рефлексная система, Решающая система, Самонастраивающаяся система, Самообучающаяся система, Самоорганизующаяся система, Сложная система, Состояние системы, Статическая система, Стохастическая система, Структура системы, Структуризация системы, Управляющая система, Устойчивость системы, Целенаправленная система, Экономическая система, Функционирование экономической системы..
    [ http://slovar-lopatnikov.ru/]

    EN

    system
    set of interrelated elements considered in a defined context as a whole and separated from their environment
    NOTE 1 – A system is generally defined with the view of achieving a given objective, e.g. by performing a definite function.
    NOTE 2 – Elements of a system may be natural or man-made material objects, as well as modes of thinking and the results thereof (e.g. forms of organisation, mathematical methods, programming languages).
    NOTE 3 – The system is considered to be separated from the environment and the other external systems by an imaginary surface, which cuts the links between them and the system.
    NOTE 4 – The term "system" should be qualified when it is not clear from the context to what it refers, e.g. control system, colorimetric system, system of units, transmission system.
    Source: 351-01-01 MOD
    [IEV number 151-11-27]

    system
    A number of related things that work together to achieve an overall objective. For example: • A computer system including hardware, software and applications • A management system, including the framework of policy, processes, functions, standards, guidelines and tools that are planned and managed together – for example, a quality management system • A database management system or operating system that includes many software modules which are designed to perform a set of related functions.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    FR

    système, m
    ensemble d'éléments reliés entre eux, considéré comme un tout dans un contexte défini et séparé de son environnement
    NOTE 1 – Un système est en général défini en vue d'atteindre un objectif déterminé, par exemple en réalisant une certaine fonction.
    NOTE 2 – Les éléments d'un système peuvent être aussi bien des objets matériels, naturels ou artificiels, que des modes de pensée et les résultats de ceux-ci (par exemple des formes d'organisation, des méthodes mathématiques, des langages de programmation).
    NOTE 3 – Le système est considéré comme séparé de l'environnement et des autres systèmes extérieurs par une surface imaginaire qui coupe les liaisons entre eux et le système.
    NOTE 4 – Il convient de qualifier le terme "système" lorsque le concept ne résulte pas clairement du contexte, par exemple système de commande, système colorimétrique, système d'unités, système de transmission.
    Source: 351-01-01 MOD
    [IEV number 151-11-27]

    Тематики

    EN

    DE

    FR

    4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей.

    Примечание 1 - Система может рассматриваться как продукт или предоставляемые им услуги.

    Примечание 2 - На практике интерпретация данного термина зачастую уточняется с помощью ассоциативного существительного, например, «система самолета». В некоторых случаях слово «система» может заменяться контекстно-зависимым синонимом, например, «самолет», хотя это может впоследствии затруднить восприятие системных принципов.

    Источник: ГОСТ Р ИСО/МЭК 12207-2010: Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств оригинал документа

    4.17 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей.

    Примечания

    1. Система может рассматриваться как продукт или как совокупность услуг, которые она обеспечивает.

    2. На практике интерпретация данного термина зачастую уточняется с помощью ассоциативного существительного, например, система самолета. В некоторых случаях слово «система» может заменяться контекстным синонимом, например, самолет, хотя это может впоследствии затруднять восприятие системных принципов.

    Источник: ГОСТ Р ИСО/МЭК 15288-2005: Информационная технология. Системная инженерия. Процессы жизненного цикла систем оригинал документа

    4.44 система (system): Комплекс процессов, технических и программных средств, устройств, обслуживаемый персоналом и обладающий возможностью удовлетворять установленным потребностям и целям (3.31 ГОСТ Р ИСО/МЭК 12207).

    Источник: ГОСТ Р ИСО/МЭК 15910-2002: Информационная технология. Процесс создания документации пользователя программного средства оригинал документа

    3.31 система (system): Комплекс, состоящий из процессов, технических и программных средств, устройств и персонала, обладающий возможностью удовлетворять установленным потребностям или целям.

    Источник: ГОСТ Р ИСО/МЭК 12207-99: Информационная технология. Процессы жизненного цикла программных средств оригинал документа

    3.36 система (system): Совокупность взаимосвязанных и взаимодействующих объектов. [ ГОСТ Р ИСО 9000, статья 3.2.1]

    Источник: ГОСТ Р 51901.6-2005: Менеджмент риска. Программа повышения надежности оригинал документа

    3.2 система (system): Совокупность взаимосвязанных и взаимодействующих элементов. [ ГОСТ Р ИСО 9000 - 2001]

    Примечания

    1 С точки зрения надежности система должна иметь:

    a) определенную цель, выраженную в виде требований к функционированию системы;

    b) заданные условия эксплуатации.

    2 Система имеет иерархическую структуру.

    Источник: ГОСТ Р 51901.5-2005: Менеджмент риска. Руководство по применению методов анализа надежности оригинал документа

    3.2.1 система (system): Совокупность взаимосвязанных и взаимодействующих элементов.

    Источник: ГОСТ Р ИСО 9000-2008: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.7 система (system): Совокупность взаимосвязанных или взаимодействующих элементов.

    Примечания

    1 Применительно к надежности система должна иметь:

    a) определенные цели, представленные в виде требований к ее функциям;

    b) установленные условия функционирования;

    c) определенные границы.

    2 Структура системы является иерархической.

    Источник: ГОСТ Р 51901.12-2007: Менеджмент риска. Метод анализа видов и последствий отказов оригинал документа

    3.2.1 система (en system; fr systéme): Совокупность взаимосвязанных или взаимодействующих элементов.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    2.39 система (system): Совокупность взаимосвязанных и взаимодействующих элементов.

    Источник: ГОСТ Р 53647.2-2009: Менеджмент непрерывности бизнеса. Часть 2. Требования оригинал документа

    3.20 система (system): Конфигурация взаимодействующих в соответствии с проектом составляющих, в которой элемент системы может сам представлять собой систему, называемую в этом случае подсистемой.

    (МЭК 61513, статья 3.61)

    Источник: ГОСТ Р МЭК 61226-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Классификация функций контроля и управления оригинал документа

    3.61 система (system): Конфигурация взаимодействующих в соответствии с проектом составляющих, в которой элемент системы может сам представлять собой систему, называемую в этом случае подсистемой.

    [МЭК 61508-4, пункт 3.3.1, модифицировано]

    Примечание 1 - См. также «система контроля и управления».

    Примечание 2 - Системы контроля и управления следует отличать от механических систем и электрических систем АС.

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    3.2.1 система (system): Совокупность взаимосвязанных и взаимодействующих элементов.

    Источник: ГОСТ ISO 9000-2011: Системы менеджмента качества. Основные положения и словарь

    2.34 система (system): Специфическое воплощение ИТ с конкретным назначением и условиями эксплуатации.

    [ИСО/МЭК 15408-1]

    а) комбинация взаимодействующих компонентов, организованных для достижения одной или нескольких поставленных целей.

    [ИСО/МЭК 15288]

    Примечания

    1 Система может рассматриваться как продукт или совокупность услуг, которые она обеспечивает.

    [ИСО/МЭК 15288]

    2 На практике интерпретация данного зачастую уточняется с помощью ассоциативного существительного, например, «система самолета». В некоторых случаях слово «система» допускается заменять, например, контекстным синонимом «самолет», хотя это может впоследствии затруднить восприятие системных принципов.

    [ИСО/МЭК 15288]

    Источник: ГОСТ Р 54581-2011: Информационная технология. Методы и средства обеспечения безопасности. Основы доверия к безопасности ИТ. Часть 1. Обзор и основы оригинал документа

    3.34 система (system):

    Совокупность связанных друг с другом подсистем и сборок компонентов и/или отдельных компонентов, функционирующих совместно для выполнения установленной задачи или

    совокупность оборудования, подсистем, обученного персонала и технических приемов, обеспечивающих выполнение или поддержку установленных функциональных задач. Полная система включает в себя относящиеся к ней сооружения, оборудование, подсистемы, материалы, обслуживание и персонал, необходимые для ее функционирования в той степени, которая считается достаточной для выполнения установленных задач в окружающей обстановке.

    Источник: ГОСТ Р 51317.1.5-2009: Совместимость технических средств электромагнитная. Воздействия электромагнитные большой мощности на системы гражданского назначения. Основные положения оригинал документа

    3.1.13 система, использующая солнечную и дополнительную энергию (solar-plus-supplementary system): Система солнечного теплоснабжения, использующая одновременно источники как солнечной, так и резервной энергии и способная обеспечить заданный уровень теплоснабжения независимо от поступления солнечной энергии.

    Источник: ГОСТ Р 54856-2011: Теплоснабжение зданий. Методика расчета энергопотребности и эффективности системы теплогенерации с солнечными установками оригинал документа

    3.2.6 система (system): Совокупность взаимосвязанных или взаимодействующих элементов.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    3.12 система (system): Совокупность взаимосвязанных и взаимодействующих элементов

    [ ГОСТ Р ИСО 9000-2008, ст. 3.2.1]

    Источник: Р 50.1.069-2009: Менеджмент риска. Рекомендации по внедрению. Часть 2. Определение процесса менеджмента риска

    Русско-английский словарь нормативно-технической терминологии > система

  • 14 представление

    с.; мат.
    - адекватное представление
    - адиабатическое представление
    - аналитическое представление
    - аналоговое представление
    - антитриплетное представление
    - асимптотическое представление
    - бесконечномерное представление группы
    - бозонное представление
    - векторное представление
    - вещественное представление группы
    - вполне приводимое представление
    - геометрическое представление
    - голоморфное представление
    - графическое представление данных
    - двойное спектральное представление
    - двузначное представление группы вращений
    - двузначное представление
    - двумерное представление
    - двухчленное представление функции распределения
    - декуплетное представление
    - дискретное представление в соответствии с методом граничных элементов
    - дискретное представление граничного интегрального уравнения
    - дискретное представление пространства
    - дискретное представление с помощью граничных элементов и внутренних ячеек
    - дискретное представление
    - дисперсионное представление
    - изоморфное представление
    - импульсное представление
    - индуцированное представление группы
    - интегральное представление
    - интуитивное представление
    - истинное представление
    - квазибозонное представление
    - квазифермионное представление
    - кварковое представление
    - квинтетное представление
    - классическое представление
    - кластерное представление
    - ковариантное представление магнитного поля
    - колебательное представление
    - комплексное представление группы
    - комплексное представление
    - комплексно-сопряжённое представление
    - конечномерное представление
    - контравариантное представление магнитного поля
    - конфигурационное представление
    - координатное представление
    - координатно-импульсное представление
    - лагранжево представление
    - левое регулярное представление группы
    - линейное представление группы
    - линейное представление
    - малое представление
    - матричное представление
    - нелинейное представление группы
    - непрерывное представление
    - неприводимое представление пространственной группы
    - неприводимое представление
    - неунитарное представление
    - нечётное представление
    - обобщённое представление
    - одномерное представление
    - однопараметрическое представление
    - ортогональное представление
    - осцилляторное представление
    - параметрическое представление
    - партонное представление
    - полоидальное представление
    - потоковое представление магнитного поля
    - правое регулярное представление группы
    - представление в виде произведения
    - представление в обозначениях Эйлера
    - представление взаимодействия
    - представление вторичного квантования
    - представление Гейзенберга
    - представление группы вращений
    - представление группы Ли
    - представление группы перестановок
    - представление группы симметрии
    - представление группы
    - представление Дайсона
    - представление Дирака - Паули
    - представление компактной группы
    - представление конечной группы
    - представление конфигурационного взаимодействия
    - представление Лагранжа
    - представление Лакса
    - представление Лемана - Келлена
    - представление Манделстама
    - представление Маркова
    - представление перестановочных соотношений
    - представление пространственной группы
    - представление типа Ланжевена
    - представление Фейнмана
    - представление Фока
    - представление Хури
    - представление чисел заполнения
    - представление Шредингера
    - приближённое представление
    - приводимое представление
    - присоединённое представление алгебры Ли
    - присоединённое представление
    - проективное представление
    - пространственное представление
    - разложимое представление
    - регулярное представление группы
    - сепарабельное представление
    - синглетное представление
    - скалярное представление
    - смешанное представление магнитного поля
    - смешанное представление
    - сопряжённое представление группы
    - сопряжённые фундаментальные представления
    - спектральное представление корреляционных функций
    - спектральное представление
    - спин-орбитальное представление
    - спинорное представление
    - струнное представление
    - схематическое представление
    - тензорное представление
    - токовое представление магнитного поля
    - токовое представление
    - точное представление группы
    - трёхмерное представление
    - трёхчастичное представление
    - тривиальное представление группы
    - триплетное представление
    - унитарное представление
    - фермионное представление
    - фундаментальное представление
    - циклическое представление группы
    - чётное представление
    - эйкональное представление
    - эквивалентное представление группы
    - энергетическое представление
    - эрмитово представление

    Русско-английский физический словарь > представление

  • 15 система кондиционирования воздуха

    1. air conditioning system

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > система кондиционирования воздуха

  • 16 роль

    1. role

     

    роль
    Набор ответственностей, деятельностей и полномочий, назначенных сотруднику или команде. Роль определяется в процессе или функции. Один сотрудник или команда может иметь несколько ролей. Например, роли менеджера конфигураций и менеджера изменений могут выполняться одним сотрудником. Этот термин также используется для описания назначения чего-либо.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    role
    A set of responsibilities, activities and authorities assigned to a person or team. A role is defined in a process or function. One person or team may have multiple roles for example, the roles of configuration manager and change manager may be carried out by a single person. Role is also used to describe the purpose of something or what it is used for.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

    роль (role): Наименование поведенческого набора, связанного с выполнением какой-либо работы (ИСО/ТС 17090-1).

    Источник: ГОСТ Р ИСО/ТС 18308-2008: Информатизация здоровья. Требования к архитектуре электронного учета здоровья

    3.2.10 роль (role): Перечень или список прав и обязанностей, установленных для потенциального или действительного члена группы взаимодействия.

    Примечание - При назначении одной или нескольких ролей члену группы взаимодействия совокупные права и обязанности, связанные с ролью(ями), передаются этому участнику.

    Пример - Ссылка на элемент модели данных идентификатора элемента модели данных 1.3. 2 настоящего стандарта (CW_ID_ value) в другом стандарте технологий взаимодействия должна выглядеть в виде ссылки «ИСО/ МЭК 19778-1: 2008, 1.3..

    b) Обозначение

    Обозначение элемента модели данных (см. определение 3.1.11).

    Обозначения элемента модели данных используются в контексте стандартов технологий взаимодействия для установления ссылок на конкретные элементы модели данных. В отличие от лингвистически нейтральных атрибутов элементов модели данных у обозначения элемента модели данных есть символическое значение; но в то же время данный атрибут может быть ориентирован на конкретный язык и может быть предметом интернационализации.

    c) Определение

    Определение элемента модели данных (см. определение 3.1.10).

    Поскольку определения представлены в таблице модели данных в наиболее компактной форме, дополнительная информация об элементах модели данных приведена в отдельном подпункте стандартов исключительно для пояснения. Во всех стандартах технологии взаимодействия определение элемента модели данных, записанное в ячейках таблицы в 3-й колонке, считают наиболее аутентичным.

    d) Степень обязательности

    Степень обязательности элемента модели данных (см. определение 3.1.15).

    При создании реализаций модели данных из модели данных степень обязательности элемента модели данных любого элемента модели данных должна исходить из степени обязательности соответствующего предка. Для модели данных это означает, что элементы модели данных со степенью обязательности элемента модели данных «выбираемый» могут иметь потомков со статусом «обязательный». В случае если любой элемент модели данных со степенью обязательности элемента модели данных «обязательный» имеет единственного потомка со статусом «выбираемый», любая реализация этой модели данных предоставляет одного или более потомка элемента данных в реализации этого элемента модели данных.

    Определены четыре возможных значения степени обязательности элемента модели данных: обязательный, выбираемый, условно обязательный и условно выбираемый.

    e) Множественность

    Множественность элемента модели данных (см. определение 3.1.14).

    Значения для диапазона значений элементов модели данных (в других источниках также определенных как «повторяемость элементов») определяют, насколько часто реализация элемента модели данных может встречаться в этой реализации модели данных.

    В реализациях моделей данных многочисленные реализации элемента данных, как правило, должны быть расположены рядом друг с другом, в то время как реализации многочисленных составных элементов (совокупных подструктур) являются результатом реализации в этих подструктурах, представленных в смежном или последовательном порядке. По умолчанию, не важен порядок размещения или перечисления реализаций разнообразных элементов модели данных. Исключение вводят примечанием об указании особого порядка представления информации в данной ячейке строки таблицы элемента модели данных.

    Необходимый минимум реализаций элемента модели данных будет принят больше нуля (даже если установлен на нуль) в тех случаях, когда степень обязательности элемента модели данных имеет значение «обязательный».

    В тех случаях, когда два значения (необходимый минимум и допустимый максимум) различаются, интервал определяют как строку связанных символов «< необходимый минимум>..< допустимый максимум>», где значения < необходимый минимум> и < допустимый максимум> - неотрицательные целые числа.

    Для указания на бесконечное множество допустимых значений параметр < допустимый максимум> записывают с символом «*».

    В тех случаях, когда два значения (необходимый минимум и допустимый максимум) совпадают, устанавливают только одно значение.

    f) Тип данных

    Тип данных, определяющий элемент данных (см. определение 3.1.6).

    В стандартах технологии взаимодействия установлено множество возможных значений для данного элемента модели данных в качестве значения типа данных элемента данных. Множество значений может быть ограничено конкретным набором значений, основанным на спецификации или стандарте, не относящемся к модели данных. Ссылка на эту внешнюю спецификацию или стандарт должна быть приведена в качестве значения соответствующего элемента данных модели данных. Модели данных, определенные в стандартах технологии взаимодействия, предоставляют структуры элемента данных и элемента модели данных специально для включения таких ссылок.

    При использовании таких ссылок элемент данных, включающий в себя ссылки, должен быть указан в колонке «Тип данных».

    g) Примеры

    Могут содержать одну или несколько иллюстраций возможных значений элемента данных.

    Источник: ГОСТ Р ИСО/МЭК 19778-1-2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства оригинал документа

    3.134 роль (role): Поименованное специфическое поведение сущности, участвующей в определенном контексте.

    Примечание - Роль может быть статической (например, конец соединения) или динамической (например, коллективная роль).

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > роль

  • 17 множество

    1. set

     

    множество
    набор
    комплект


    [ http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=4318]

    множество
    Одно из основных понятий современной математики, «произвольная совокупность определенных и различимых объектов, объединенных мысленно в единое целое». (Так определял множество основатель теории множеств, известный немецкий математик Георг Кантор. Правда, уже в начале XX в. стало ясно, что определение Кантора нельзя считать достаточно строгим, так как оно приводит к различным логическим противоречиям. Широко распространено убеждение, что «М.» — понятие, поясняемое только на примерах. Такая странная для математики ситуация объясняется отчасти тем, что все попытки определить термин «М.» приводят, по существу, к замене его другими, столь же неопределенными понятиями). Примеры множеств: М. действительных чисел, М. лошадей в табуне, М. планов, М. функций, М. переменных задачи. Все М., кроме пустого М., состоят из элементов. Например, каждое действительное число есть один из элементов М. действительных чисел. То, что элемент a принадлежит множеству A, обозначают с помощью специального знака a ?A. Это читается так: «a принадлежит множеству А в качестве элемента». М. можно задать прямым перечислением элементов. Пусть А состоит из элементов a1, a2, a3. Это записывается так: A = {a1, a2, a3}. Если непосредственное перечисление элементов М. невозможно (например, когда М. A состоит из бесконечного числа элементов), его определяют характеристическим высказыванием, т.е. высказыванием, истинным только для элементов данного М. В таком случае употребляется запись типа: A = {x|P(x) = И}, которая читается так: «М. A — есть М., состоящее из элементов x таких, что P(x) — истинно». Множество М всех планов x, удовлетворяющих условию, что они лучше (больше), чем план x0, может быть задано с помощью высказывания: М {x|(x>x0) = И} или сокращенно: M = {x|(x>x0)}. Коротко остановимся на определениях и свойствах действий над множествами. Прежде всего, можно рассмотреть два М. — A и B, обладающих следующим свойством: все элементы М. A принадлежат и М. B. Множество A есть, таким образом, подмножество B. Это обозначается так: A ? B. Предположим теперь, что даны произвольные М. A и B. Тогда из элементов этих М. можно сконструировать несколько других: Во-первых, М. элементов, принадлежащих либо A, либо B; такая операция над М. обозначается через A ? B и называется объединением; ясно, например, что если A? B, то A ? B = B; кроме того, A? B = B? A это свойство называется коммутативностью; (A? B) ? C = A ? (B? C) - это свойство — ассоциативность (возможность произвольного разбиения на группы); Во-вторых, можно рассмотреть также М. элементов, принадлежащих и A, и B одновременно; такая операция называется пересечением и обозначается через ?. Предположим, что A? B, тогда A ? B = A. Для того, чтобы пересечение двух М. имело смысл, даже если у них нет общих элементов, вводится понятие пустого М., т.е. М. без элементов. Его обозначают ?. Легко увидеть, что A ? ? = A; A ? ? = ? ; Так же, как и объединение, операция ? — ассоциативна и коммутативна. Объединение множеств называют иногда их суммой, а пересечение их — произведением. В третьих, можно выделить также подмножество элементов множества A, не принадлежащих B. Это действие называется дополнением B до A или разностью A\B. Так же как и в случае обычной разности, это действие некоммутативно. В евклидовом n-мерном пространстве М., содержащее все свои граничные точки, — замкнутое; М., для которого существует (n-мерный) шар, целиком его содержащий, — ограниченное; ограниченное и замкнутое М. называется компактным; о выпуклом М. см. Выпуклость, вогнутость. В разных контекстах вместо слова множество часто употребляют: область (напр. Область допустимых решений) или пространство (напр. Простртанство производственных возможностей). См. также Венна диаграммы, Декартово произведение множеств, Нечеткое, размытое множество.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > множество

  • 18 скользящее резервирование

    1. sliding redundancy

     

    скользящее резервирование
    Резервирование замещением, при котором группа основных элементов резервируется одним или несколькими резервными элементами, каждый аз которых может заменить любой из отказавших элементов данной группы.
    [ ГОСТ 27.002-89]

    Тематики

    • надежность, основные понятия

    EN

    7.15. Скользящее резервирование

    Sliding redundancy

    Резервирование замещением, при котором группа основных элементов резервируется одним или несколькими резервными элементами, каждый аз которых может заменить любой из отказавших элементов данной группы

    Источник: ГОСТ 27.002-89: Надежность в технике. Основные понятия. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > скользящее резервирование

  • 19 схема

    1. scheme
    2. schema
    3. arrangement

     

    схема
    Упрощённое графическое изображение предмета или процесса с пояснением и описанием
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    схема
    Условное графическое изображение объекта, в общих чертах передающее суть его характера и структуру.
    [ ГОСТ Р 7.0.3-2006]

    схема
    Конструктивные узлы и электрические соединения обмоток преобразователя и радиоэлектронных элементов прибора
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    1. ВИДЫ И ТИПЫ СХЕМ

    1.1. Схемы в зависимости от видов элементов и связей, входящих в состав изделия (установки), подразделяют на следующие виды:

    • электрические;
    • гидравлические;
    • пневматические;
    • газовые (кроме пневматических);
    • кинематические;
    • вакуумные;
    • оптические;
    • энергетические;
    • деления;
    • комбинированные.

    Примечания:

    1. Для изделия, в состав которого входят элементы разных видов, разрабатывают несколько схем соответствующих видов одного типа, например, схема электрическая принципиальная и схема гидравлическая принципиальная или одну комбинированную схему, содержащую элементы и связи разных видов.

    2. На схеме одного вида допускается изображать элементы схем другого вида, непосредственно влияющие на работу схемы этого вида, а также элементы и устройства, не входящие в изделие (установку), на которое (которую) составляют схему, но необходимые для разъяснения принципов работы изделия (установки).

    Графические обозначения таких элементов и устройств отделяют на схеме штрих-пунктирными линиями, равными по толщине линиям связи, и помещают надписи, указывая в них местонахождение этих элементов, а также необходимые данные.

    3. Схему деления изделия на составные части (схему деления) выпускают для определения состава изделия.

    1.2. Схемы в зависимости от основного назначения подразделяют на следующие типы:

    • структурные;
    • функциональные;
    • принципиальные (полные);
    • соединений (монтажные);
    • подключения;
    • общие;
    • расположения;
    • объединенные.

    Примечание. Наименования типов схем, указанные в скобках, устанавливают для электрических схем энергетических сооружений.


    2.6. Перечень элементов

    2.6.1. Перечень элементов помещают на первом листе схемы или выполняют в виде самостоятельного документа.

    2.6.2. Перечень элементов оформляют в виде таблицы (черт. 3), заполняемой сверху вниз.

    4696

    Черт. 3

    В графах таблицы указывают следующие данные: в графе "Поз. обозначение" - позиционные обозначения элементов, устройств и функциональных групп;

    в графе "Наименование" - для элемента (устройства) - наименование в соответствии с документом, на основании которого этот элемент (устройство) применен, и обозначение этого документа (основной конструкторский документ, государственный стандарт, отраслевой стандарт, технические условия); - для функциональной группы - наименование:

    в графе Примечание" - рекомендуется указывать технические данные элемента (устройства), не содержащиеся в его наименовании.

    2.6.3. При выполнении перечня элементов на первом листе схемы его располагают, как правило, над основной надписью.

    .....

    2.6.5. При разбивке поля схемы на зоны перечень элементов дополняют графой "Зона" (черт. 4), указывая в ней обозначение зоны, в которой расположен данный элемент (устройство).

    4697
    Черт. 4

    [ГОСТ 2.701-84]

    Тематики

    • виды (методы) и технология неразр. контроля
    • издания, основные виды и элементы
    • проектирование, документация

    EN

    DE

    FR

    2.59 схема (schema): Описание содержания, структуры и ограничений, используемых для создания и поддержки базы данных.

    Источник: ГОСТ Р ИСО/МЭК ТО 10032-2007: Эталонная модель управления данными

    Русско-английский словарь нормативно-технической терминологии > схема

  • 20 попарно сбалансированный код в цифровой линии передачи сигнала электросвязи

    1. paired-disparity code

     

    попарно сбалансированный код в цифровой линии передачи сигнала электросвязи
    попарно сбалансированный код
    Сбалансированный код в цифровой линии передачи сигнала электросвязи, при котором некоторые или все следующие друг за другом символы пли группы символов n-уровневого сигнала электросвязи представлены парами элементов или отрезков цифрового сигнала электросвязи, имеющими противоположные по знаку цифровые суммы, с целью уменьшения вариации цифровой суммы n-уровневого сигнала электросвязи в более длинном отрезке этого сигнала.
    Примечание
    Примером попарно сбалансированного кода является код квазитроичного сигнала электросвязи с чередованием полярности импульсов.
    [ ГОСТ 22670-77]

    Тематики

    Синонимы

    EN

    75. Попарно сбалансированный код в цифровой линии передачи сигнала электросвязи

    Попарно сбалансированный код

    Paired-disparity code

    Сбалансированный код в цифровой линии передачи сигнала электросвязи, при котором некоторые или все следующие друг за другом символы или группы символов n-уровневого сигнала электросвязи представлены парами элементов или отрезков цифрового сигнала электросвязи, имеющими противоположные по знаку цифровые суммы, с целью уменьшения вариации цифровой суммы n-уровневого сигнала электросвязи в более длинном отрезке этого сигнала.

    Примечание. Примером попарно сбалансированного кода является код квазитроичного сигнала электросвязи с чередованием полярности импульсов

    Источник: ГОСТ 22670-77: Сеть связи цифровая интегральная. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > попарно сбалансированный код в цифровой линии передачи сигнала электросвязи

См. также в других словарях:

  • Группы крови — У этого термина существуют и другие значения, см. Группы крови (значения). Группа крови  описание индивидуальных антигенных характеристик эритроцитов, определяемое с помощью методов идентификации специфических групп углеводов и белков,… …   Википедия

  • ГРУППЫ СИММЕТРИИ ПРОСТРАНСТВЕННЫЕ — совокупности элементов симметрии для правильных систем точек, т. е. таких бесконечно протяженных систем, в которых вокруг каждой точки все остальные расположены совершенно так же, как и вокруг всякой другой. В кристаллографии Г. с. п.… …   Геологическая энциклопедия

  • ГРУППЫ C = O ПЕРВОГО И ВТОРОГО РОДА — (C = O1 и C = O11) условное обозначение карбонильных гр., обнаруживаемых в битумоидах методом инфракрасной спектрометрии, предложенное Глебовской в связи с рекомендацией их для диагностики генетических категорий битуминозных веществ. Гр. C = O1… …   Геологическая энциклопедия

  • Группы химических элементов — Группа химических элементов  термин, используемый ИЮПАК для описания номенклатурной классификации химических элементов[1]. Содержание 1 Названия групп химических элементов, утверждённые ИЮПАК …   Википедия

  • Группы Ли — Группой Ли над полем K ( или ) называется группа G, снабжённая структурой дифференцируемого (гладкого) многообразия над K, причём отображения и , определённые так …   Википедия

  • Группы симметрии — Группа симметрии (группа симметрий) некоторого объекта, многогранника или множества точек из метрического пространства ― это группа всех движений, для которых данный объект является инвариантом, с композицией в качестве групповой операции. Как… …   Википедия

  • Группы самопомощи (self-help groups) — Г. с. представляют собой более или менее формальные орг ции непрофессионалов, преследующих общую цель ради достижения блага для каждого члена группы. Речь идет о группах, главная цель к рых изменения в психологии или поведении участников. Они… …   Психологическая энциклопедия

  • Изоморфные группы — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У …   Википедия

  • Кручение группы — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У …   Википедия

  • Норма группы — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У …   Википедия

  • Порядок группы — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»